New scaffolding repairs severe teeth and jawbone defects

Scientists from Norway develop method for bone regeneration

Dental researchers at the University of Oslo have developed a new artificial scaffolding that aids bone regeneration. Within a few years, they hope to market their invention to help patients with serious teeth and jaw damage caused by severe periodontitis, mandibular cancer, infection or trauma.

According to the researchers, the artificial scaffolding could be used in particular for cases in which the gap between two bone fragments is too wide, or when large parts of the bone have been damaged through surgical removal or radiotherapy. The scaffolding helps the body repair such serious defects, the researchers explained.

"With the new method, it is sufficient to insert a small piece of synthetic bone-stimulating material into the bone. The artificial scaffolding is as strong as real bone and yet porous enough for bone tissue and blood vessels to grow into it and work as a reinforcement for the new bone," said Prof. Ståle Petter Lyngstadlaas, dean of research at the Department of Biomatertials at the university’s Institute of Clinical Dentistry.

The scaffolding can be produced like cinder blocks and cut into individual shapes to fit into specific bone defects. It is manufactured from a mixture of water and ceramic powder, which is poured through foam rubber that was designed to look like trabecular bone. The ceramic powder consists of medical-grade titanium dioxide monodisperse nanoparticles, which are also widely used as an additive in sweets, toothpaste and baked goods. Once the mixture has solidified, it is heated to a temperature that causes the foam rubber to dissolve into water vapor and carbon dioxide and the nanoparticles to ligate into one solid structure. It has an open porosity of 90 percent, containing mostly empty space that can be filled with new bone.

• See SCAFFOLDING, page A2

Dental Tribune
Dental researchers at the University of Oslo have developed a new artificial scaffolding that aids bone regeneration. Within a few years, they hope to market their invention to help patients with serious teeth and jaw damage caused by severe periodontitis, mandibular cancer, infection or trauma.

According to the researchers, the artificial scaffolding could be used in particular for cases in which the gap between two bone fragments is too wide, or when large parts of the bone have been damaged through surgical removal or radiotherapy. The scaffolding helps the body repair such serious defects, the researchers explained.

"With the new method, it is sufficient to insert a small piece of synthetic bone-stimulating material into the bone. The artificial scaffolding is as strong as real bone and yet porous enough for bone tissue and blood vessels to grow into it and work as a reinforcement for the new bone," said Prof. Ståle Petter Lyngstadlaas, dean of research at the Department of Biomatertials at the university’s Institute of Clinical Dentistry.

The scaffolding can be produced like cinder blocks and cut into individual shapes to fit into specific bone defects. It is manufactured from a mixture of water and ceramic powder, which is poured through foam rubber that was designed to look like trabecular bone. The ceramic powder consists of medical-grade titanium dioxide monodisperse nanoparticles, which are also widely used as an additive in sweets, toothpaste and baked goods. Once the mixture has solidified, it is heated to a temperature that causes the foam rubber to dissolve into water vapor and carbon dioxide and the nanoparticles to ligate into one solid structure. It has an open porosity of 90 percent, containing mostly empty space that can be filled with new bone.

• See SCAFFOLDING, page A2
Antibacterial agent boosts
toothpaste effectiveness

Adding triclosan and copolymer to fluoride toothpaste appears to help reduce plaque, inflammation, bleeding and tooth decay

Fluoride toothpaste recommended at child’s first tooth

To fight cavities in children, the American Dental Association’s Council on Scientific Affairs is updating its guidance to caregivers that they should brush their children’s teeth with fluoride toothpaste as soon as the first tooth comes in. This new guidance expands the use of fluoride toothpaste for young children.

‘To help prevent children’s tooth decay, the CSA recommends that caregivers use a smear of fluoride toothpaste (or an amount about the size of a grain of rice) for children younger than 3 years old and a pea-sized amount of fluoride toothpaste for children 3 to 6 years old.’

For half a century, the ADA has recommended that patients use fluoride toothpaste to prevent cavities, and a review of scientific research shows that this holds true for all ages,” said Edmond L. Truelove, DDS, chair of the CSA. “Approximately 25 percent of children have or had cavities before entering kindergarten, so it’s important to provide guidance to caregivers on the appropriate use of fluoride toothpaste to help prevent their children from developing cavities.”

Dental decay is the most common chronic childhood disease, with more than 16 million children suffering from untreated tooth decay in the United States, according to the U.S. Centers for Disease Control.

CSA previously recommended using just water to brush the teeth of children younger than 2 years old and to brush the teeth of children 2 to 6 years old with a pea-size amount of fluoride toothpaste. The Association’s updated guidance is based on a review of scientific evidence. The new guidance is intended to provide children cavity protection while limiting their risk of developing fluorosis.

The reports, “Fluoride toothpaste use for young children” and “Fluoride toothpaste efficacy and safety in children younger than 6 years,” were published in the February 2014 edition of the Journal of the American Dental Association.

(Source: American Dental Association)